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1 Multisets

Definition 1.1. A multiset is a set that allows repeated elements. Formally, we can define
it as a function from a set to the natural numbers, where f(a) = n means that the element
a is contained n times in the multiset. Then a set is a multiset where the range of f is a
subset of {0, 1}.

Denote multisets by
r
ak11 , . . . , a

k`
`

z
, and let n = k1 + · · ·+ k`.

Example 1.1. The multiset of the letters in the word “MISSISSIPPI” is
q
M1, I4, S4, P 2

y
.

If we want to count multisets, we can use the same method as before with ordinary
binomial coefficients. The stabilizer of a multiset is Sk1 × · · · × Sk` , a product of Young
subgroups. Then the number of permutations of a multiset is(

n

k1, . . . , k`

)
:=

n!

k1! · · · k`!
.

With this notation, the usual binomial coefficient is just
(
n
k

)
=
(

n
k,n−k

)
.

If we have n-letter words (ω1, . . . , ωn) with ωi ∈ A, they can be expressed as a map
[n]

ω−→ A. Then Sn acts on these words by σ·ω = ω◦σ−1; we precompose by the permutation
because [n] is the domain, not the codomain, and we use σ−1 to make the associative law
work out correctly.

1.1 Counting k-element multisets of [n]

Definition 1.2. The multiset coefficient
〈
n
k

〉
is the number of k-element multisets of [n].

A multiset of this type is [[1r1 , . . . , nrn ]], where r1 + · · · + rn = k and ri ≥ 0. This is
counting compositions of k with n parts (different from partitions because order matters).
Note that the number of these compositions where ri > 0 (strict inequality) is the same as
the number of compositions where the sum is k − n (

〈
n
k

〉
). We will look at 3 solutions to

this problem.
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1.1.1 Counting multisets using generating functions

We try to find
∑∞

k=0

〈
n
k

〉
xk. Think of it as a weighted count of all multisubsets of [n].

Given a finite set A, |A| =
∑

a∈A 1. A weighted sum will put weights instead of the 1s
here. This is useful because ∑

ρ=(r1...,rn)
ri≥0

x|ρ| =
∑
ρ

xr1+···+rn .

In fact, consider the fact that |A×B| = |A| |B|. Using the concept of the sum above,
we can see that this is true because the weights (all weights being 1) multiply. In fact, it
makes sense to make arbitrary weights multiply here.

Our set here is Nn, since (r1, . . . , rn) ∈ Nn. So weight N with r 7→ xr. Then

∞∑
k=0

〈n
k

〉
xk = F (x)n, where F (s) =

∑
r≥0

xr =
1

1− x
.

∞∑
k=0

〈n
k

〉
xk =

(
1

1− x

)n
= (1− x)−n.

Note the similarity to the binomial theorem, which gives us that
∑∞

k=0

(
n
k

)
xk = (1 + x)n.

Recall Newton’s binomial coefficients
(
α
k

)
:= [α]k

k! from last lecture. Analogously, we
have

Theorem 1.1 (Newton’s Binomial theorem). For any α ∈ R,

(1 + x)α =
∞∑
k=0

(
α

k

)
xk.

Proof. To find the coefficient of the xk term of the Maclaurin series of (1+x)α, differentiate
both sides k times and evaluate at x = 0. We get that the coefficient of xk is equal to
α(α− 1) · · · (α− k + 1)/k! = [α]k/k! =

(
α
k

)
.

We may then write

(1− x)−n =

∞∑
k=0

(
−n
k

)
(−x)k,

which implies that〈n
k

〉
= (−1)k

(
−n
k

)
= (−1)k

(−n)(−n− 1) · · · (−n− k + 1)

k!

=
n(n+ 1) · · · (n+ k − 1)

k!
=

[n+ k − 1]k
k!

=

(
n+ k − 1

k

)
.
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Example 1.2.
〈
n
k

〉
is the number of polynomials xr11 · · ·xrnn of degree k in n variables,

which is dimQ[x1, . . . , xn](k). So dimQ[x1, x2, x3](4) =
〈
3
4

〉
=
(
3+4−1

3

)
=
(
6
3

)
= 20.

Remark 1.1. What do we mean when we use generating functions? In general, we don’t
want to think about it analytically, bothering with radii of convergence, which in some
cases may be 0 (such as for the power series of factorials). Instead, consider these as
formal power series, in the algebraic sense. In this case, the F (x) = 1/(1− x) we defined
before can be interpreted in the sense that (1 − x)

∑
r≥0 x

r = 1. In this case, Newton’s
Binomial Theorem still holds; we just have to define (1 + x)α := exp(α log(1 + x)), where
exp(x) =

∑∞
n=0 x

n/n! and log(1 + x) =
∑∞

n=1 x
n/n.
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